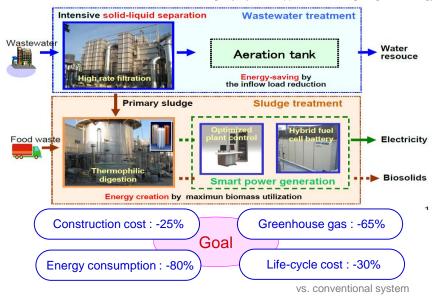
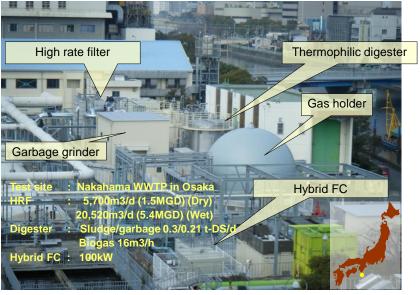
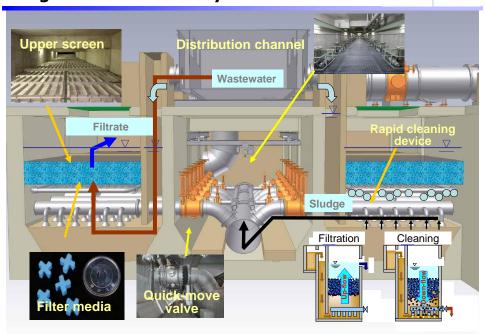
IWA Half-day Seminar in Tokyo



Outline of 23B-DASH Project


METAWATER

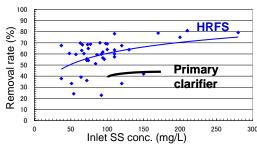
Demonstration Plant


The project, led by MLIT, was carried out in cooperation with Japan Sewage Work Agency.

METAWATER

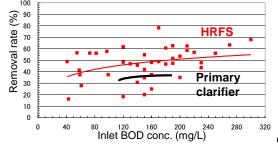
High Rate Filtration System

High Rate Filtration System


METAWATER

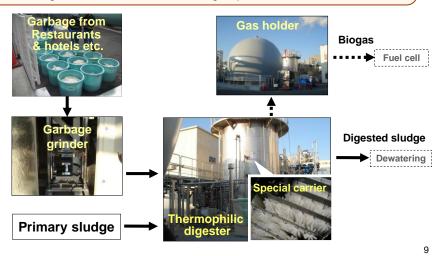
Filter Performance

METAWATER

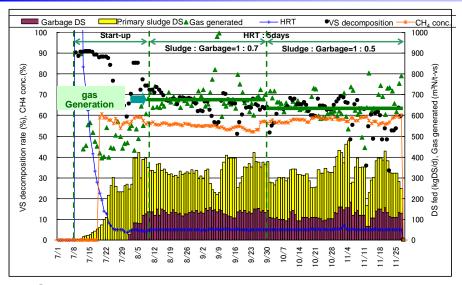


BOD removal rate

Comparison with Primary Sedimentation METAWATER


		Primary sedimentation	High rate filtration
			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Treatment performance		Fair SS removal : 50 % BOD removal : 40 %	Good SS removal : 70 % BOD removal : 50 %
Power consumption		100	100
Ov	erflow rate	50m/d (0.9gpm/ft²)	250 - 1,000m/d (4.3 - 17gpm/ft²)
Fo	otprint	100	35
value	Other application	_	Primary clarifier alternative (250m/d)
Added va	Earthquake resistance	Poor Chain dislocation etc.	Fair Seismic-resistant structure (A primary clarifier can be converted to a HRF)
Re	ference	Many	26 locations nationwide

Thermophilic Digestion

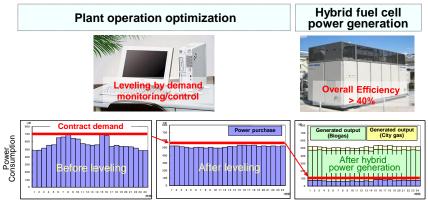


- Enhanced biogas production by co-digesting sludge and food waste
- Small footprint · · · Min. HRT 5days
- Durable against load fluctuation through special carrier

Digestion rate & Biogas Generation

METAWATER

Stable digestion and gas generation and with short HRT



Smart Power Generation System

11

Smart Power Generation System

METAWATER

Advantages

- 1) Power cost saving
 - Contract demand reduction by demand peak leveling
 - Full biogas utilization by supplementing with city gas
- 2) Power supply by FC using city gas in emergency/blackout

12

Hybrid Fuel Cell (100kW)

13

Summary

Finance	Power cost reduction - Enhanced power generation by co-digestion - Aeration power saving by HRFS	
Environ- ment	CSO/SSO countermeasure by HRFS GHG reduction by biosolid/biomass utilization	
Safety	Disaster-resistant system - Enhanced primary treatment by HRFS in emergency - Emergency power supply by Hybrid FC in blackout	
Life	Possible disposer diffusion in the future - Enhanced SS recovery by HRFS MSW (Municipal Solid Waste) volume reduction	

15

Thank you for your attention.

Beyond engineering